Table of Contents

2 Foreword
4 Champalimaud Research
6 Invited Speakers
8 Programme at a Glance
10 Detailed Schedule
18 Poster Presentations
26 Practical Information
28 Symposium Activities
32 Notes
Welcome to the 2018 Champalimaud Research Symposium on Quantitative Approaches to Behaviour and Neural Systems! We have an exciting four days ahead of us to exchange visions, viewpoints, experiences and ideas.

At this moment, our field is in a state of rapid development and exploration. New experimental techniques and analysis methodologies allow unprecedented resolution and scope in our interrogation of animal behaviour and the structure and function of the nervous system.

As usual in science, such progress brings opportunities to evaluate and question the conceptual frameworks that we use to interpret these results and to push our investigations in new directions. This effort is particularly important in biology and neuroscience which have greatly benefited from theories adapted from other disciplines, such as physics, statistics, computer science and engineering.

Our goal has been to gather experts from all of these fields in order to showcase some of these exciting new approaches and to promote a discussion of how to identify the essential problems that we are facing, and the critical elements that theories of neural systems and behaviour should address. We are truly grateful and honoured by the fact that all of you have decided to join us in this project.

We encourage you to take this opportunity to enjoy the vibrant spirit and warm hospitality of the Champalimaud Research community, and the city of Lisbon as a whole. Ask questions, speak your mind and explore, and we hope that we can all come to the end as slightly different scientists than we were at the beginning, excited to explore new scientific directions with new friends.
Champalimaud Research currently comprises 19 main research groups, counting more than 300 scientists who work in two different areas of investigation, within two sub-programmes.

Created in 2007, the Champalimaud Neuroscience Programme aims to unravel the neural basis of behaviour, attempting to forge new links between the nervous system function and the behavioural output.

The Biology of Systems and Metastasis Programme, established in 2014, aims to understand and prevent cancer, understanding changes in communication between cells, tissues and organs, and changes in metabolism that permit cells to metastasise and tumours to grow.
Invited Speakers

Keynote speaker

Haim Sompolinsky
Hebrew Univ.
Israel
23 Tue
19:00

Surya Ganguli
Stanford Univ.
USA
24 Wed
15:00

Anne Churchland
CSHL
USA
25 Thu
12:00

Megan Carey
Champalimaud Portugal
26 Fri
11:00

Tim Behrens
Univ. Oxford
UK
24 Wed
09:30

Barbara Webb
Univ. of Edinburg
UK
24 Wed
17:00

Albert-László Barabasi
Northeastern Univ.
USA
26 Fri
12:00

Mark Transtrum
Brigham Young Univ.
USA
26 Fri
12:00

Christian Machens
Champalimaud
Portugal
24 Wed
11:00

Matthew Botvinick
DeepMind & UCL
UK
25 Thu
09:30

Rainer Friedrich
FMI
Switzerland
25 Thu
17:00

Florian Engel
Harvard Univ.
USA
26 Fri
13:30

Mark Humphries
Univ. Nottingham
UK
24 Wed
12:00

Maria Neimark Geffen
Univ. Pennsylvania
USA
25 Thu
11:00

Josh McDermott
MIT
USA
26 Fri
09:30

Stuart Geman
Brown Univ.
USA
26 Fri
15:15
tuesday

15:00 - 17:00 Auditorium hall

REGISTRATION

17:00 Welcome reception Amphitheatre

18:30 Auditorium

Opening remarks
Champalimaud Foundation board and chairs of the 2018 Champalimaud Research Symposium

19:00 Auditorium

KEYNOTE LECTURE

Haim Sompolinsky
Hebrew University, Israel

Transformation of sensory representations in deep neural architectures
Wednesday

RegISTRATION

09:00 - 09h30

Talk Session

09:30

Auditorium hall

- **Invited Speaker**
 - **Tim Behrens**
 - University of Oxford, UK
 - Inference in replay through factorised representations

- **Selected Speaker**
 - **Stephen Lisberger**
 - Duke University, USA
 - Quantitative analysis of behavior and neural responses explicates a sensory-motor system

Coffee break

- **Invited Speaker**
 - **Christian Machens**
 - Champalimaud Centre for the Unknown, Portugal
 - Robust coding with spiking neural networks

- **Selected Speaker**
 - **Julie Lee**
 - University College London, UK
 - Probing task selectivity in mouse parietal cortex

- **Invited Speaker**
 - **Mark Humphries**
 - University of Nottingham, UK
 - Decision and memory representations in the prefrontal cortex independently contribute to learning

Poster Session I

11:30 - 13:00

Exhibition hall

- **Surya Ganguli**
 - Stanford University, USA
 - Emergent elasticity in the neural code for space

- **Discussion**
 - Alex Cayco Gajic
 - Barbara Webb

Coffee break

- **Alex Cayco Gajic**
 - University College London, UK
 - Population activity of cerebellar granule cells in awake mice

- **Barbara Webb**
 - University of Edinburgh, UK
 - Closing the loop: modelling the neural basis of path integration in the insect brain

13:00

Exhibition hall

Lunch

15:00

Auditorium

- **Invited Speaker**
 - **Surya Ganguli**
 - Stanford University, USA
 - Emergent elasticity in the neural code for space

- **Discussion**
 - Alex Cayco Gajic
 - Barbara Webb

Coffee break

- **Alex Cayco Gajic**
 - University College London, UK
 - Population activity of cerebellar granule cells in awake mice

- **Barbara Webb**
 - University of Edinburgh, UK
 - Closing the loop: modelling the neural basis of path integration in the insect brain

18:00

Exhibition hall

Lisbon tour

CCU Entrance
25 thursday

09:00 - 09:30 Auditorium hall

REGISTRATION

09:30 Auditorium

TALK SESSION

1 Invited speaker

Matthew Botvinick
DeepMind & University College London, UK
Neural correlates of distributional reinforcement learning

António Miguel Fernandes
Max Planck Institute of Neurobiology, Germany
Neuronal circuitry for stimulus competition in the visual system

Coffee break

Maria Neimark Geffen
University of Pennsylvania, USA
Excitatory-inhibitory neuronal circuits for dynamic auditory perception

Tomoki Fukai
RIKEN Center for Brain Science, Japan
Unsupervised learning of information streams in networks of dendritic neurons

Anne Churchland
Cold Spring Harbor Laboratory, USA
Movement-related activity dominates cortex during sensory-guided decision making

12:30 - 13:00 Exhibition hall

Lunch

13:00 Exhibition hall

POSTER SESSION II

15:00 Auditorium

TALK SESSION

Albert-László Barabási
Northeastern University, USA
Controlling networks: fundamentals and applications to brain science

Discussion

Coffee break

Mafalda Valente
Champalimaud Centre for the Unknown, Portugal
Reaction time reveals the mechanistic basis of Weber's law

Rainer Friedrich
Friedrich Miescher Institute for Biomedical Research, Switzerland
Connectivity determines computation in the olfactory bulb
Friday

09:00 - 09:30
Auditorium hall

REGISTRATION

09:30
Auditorium

TALK SESSION

Josh McDermott
Massachusetts Institute of Technology, USA
Next-generation auditory observer models via deep learning

Caroline Haimerl
New York University, USA
New York University, USA
Shared stochastic modulation can facilitate biologically plausible decoding

Coffee break

Megan Carey
Champalimaud Centre for the Unknown, Portugal
Spatial and temporal locomotor learning in mouse cerebellum

Adam Calhoun
Princeton University, USA
Estimating behavioral state for sensorimotor transformations

Mark Transtrum
Brigham Young University, USA
Model reduction and effective theories in physics, biology, and neuroscience

12:30 - 13:30
Lunch
Exhibition hall

13:30
Auditorium

TALK SESSION

Florian Engert
Harvard University, USA
Neuronal mechanisms of evidence accumulation and perceptual decision making in the larval zebrafish

Discussion

14:00

Luke Coddington
HHMI Janelia Research Campus, USA
Are dopamine prediction errors a cause or a consequence of learning?

Stuart Geman
Brown University, USA
How do biological and artificial neural networks represent relationships?

15:45
Auditorium

Closing remarks
Chairs of the 2018 Champalimaud Research Symposium

16:00
Auditorium

Wine & cheese
Amphitheatre

17:30
Boat trip
CCU Entrance

19:30
Banquet & Party
Doc Cod, Doca de 5ª Amaro
<table>
<thead>
<tr>
<th>Poster number</th>
<th>Poster number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>18</td>
<td>Tracking and automatic classification of rodents’ behavioral activity using depth cameras</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>Decreased locomotor activity accounts for the effects of Type-1 endocannabinoid receptor deletion on cerebellum-dependent learning</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>Adult-born neurons boost odor–reward association</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>Structure of motor cortical dynamics during operant learning of neural patterns</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>Exposure to threat triggers defensive behaviors coupled to changes in cardiac activity in Drosophila melanogaster</td>
</tr>
<tr>
<td>17</td>
<td>23</td>
<td>I move, therefore I am (7): Active control increases sense of ownership over a virtual limb in a reaching-like task</td>
</tr>
<tr>
<td>19</td>
<td>24</td>
<td>Impact of acute stress on instrumental learning: a computational model-based approach</td>
</tr>
<tr>
<td>21</td>
<td>25</td>
<td>Prefrontal neural ensembles dynamics underlying foraging decisions</td>
</tr>
<tr>
<td>22</td>
<td>26</td>
<td>Towards dynamic effective connectivity: using transfer entropy to estimate cortico-motor delays in MEG data</td>
</tr>
<tr>
<td>23</td>
<td>27</td>
<td>The unreal self - investigating the effect of depersonalization on multisensory processing of the self and other</td>
</tr>
<tr>
<td>24</td>
<td>28</td>
<td>Quantifying the dynamic nature of social status in mice</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>Predicting spikes of barrel cortex neurons from sensory data during active sensation</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>Movement vigour and robust control of human reaching movements</td>
</tr>
<tr>
<td>29</td>
<td>31</td>
<td>Opponency in the basal ganglia during action suppression</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>Mapping the circuitry for spatial and temporal locomotor learning</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>Dorsomedial striatum encodes behavioral variables relevant for building trial-history choice biases</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>Columbia University, USA</td>
</tr>
<tr>
<td>37</td>
<td>35</td>
<td>Quantitative phenotyping and modelling identify key behavioural rules underlying C. elegans aggregation</td>
</tr>
<tr>
<td>39</td>
<td>36</td>
<td>Characterisation of male sexual behaviour: using accelerometer data for automatic behavioural classification in mice</td>
</tr>
<tr>
<td>40</td>
<td>37</td>
<td>Sexually dimorphic whole-brain monosynaptic inputs to Neuroendocrine Dopaminergic cells in mice</td>
</tr>
<tr>
<td>43</td>
<td>38</td>
<td>Chronic adolescent administration of the cannabinoid receptor agonist HU-210 does not induce an adult depressive like-phenotype in female rats</td>
</tr>
<tr>
<td>47</td>
<td>39</td>
<td>Long-term stability of neural population activity in motor and sensory cortices during repeated task execution</td>
</tr>
<tr>
<td>49</td>
<td>40</td>
<td>Dictionary-based Compression Reveals Structure and Phenotypic Differences in Zebrafish Behaviour</td>
</tr>
<tr>
<td>52</td>
<td>41</td>
<td>Early life social experience is required for fine-tuning social avoidance kinematics in larval zebrafish</td>
</tr>
<tr>
<td>55</td>
<td>42</td>
<td>Stimulus-specific habituation of mouse defensive responses to stimuli moving overhead</td>
</tr>
<tr>
<td>56</td>
<td>43</td>
<td>Aggregation rule in animal collectives dynamically changes betweenmajority and minority voting</td>
</tr>
<tr>
<td>57</td>
<td>44</td>
<td>The costs of surprise versus the benefits of expectancy: how reaction times are affected by stimulus expectations.</td>
</tr>
<tr>
<td>59</td>
<td>45</td>
<td>Postural control and body equilibrium during a defensive behaviour in Drosophila Melanogaster</td>
</tr>
<tr>
<td>64</td>
<td>46</td>
<td>Dopaminergic and noradrenergic network dynamics during behavioral exploration</td>
</tr>
<tr>
<td>71</td>
<td>47</td>
<td>Empirical model for male mice sexual behavior</td>
</tr>
<tr>
<td>75</td>
<td>48</td>
<td>Emergence of seashell pattern and form from mechanics and neural signaling</td>
</tr>
<tr>
<td>77</td>
<td>49</td>
<td>Optogenetic manipulation of distinct deep cerebellar nuclei differentially affects coordinated locomotion in mice</td>
</tr>
<tr>
<td>80</td>
<td>50</td>
<td>Linear dimensionality reduction and non-negative firing rates: signatures of a mismatch</td>
</tr>
<tr>
<td>81</td>
<td>51</td>
<td>Predictive coding of sensory variables in recurrent networks with realistic connection probabilities and synaptic dynamics</td>
</tr>
<tr>
<td>82</td>
<td>52</td>
<td>Neural correlates of competitive social interaction in the anterior cingulate cortex</td>
</tr>
</tbody>
</table>
Poster 20

100
Park, Hame
The University of Melbourne, Australia
The magical number 4 in visual perception conjured in random paw choices and procedural learning in mice

101
Perrotin, Catherine
University College, London, UK
Delineating the listener’s perceptual sensitivity to acoustic cues in mouse social communication

102
Pexaira, Margarida
Champalimaud Centre for the Unknown, Portugal
Manipulations of striatal temperature cause dose dependent changes in duration judgments

103
Prat, Genis Ortega
Centre de Recerca Matemàtica, Spain
Flexible categorization in perceptual decision making

104
Reminger, Sabine L.
Champalimaud Centre for the Unknown, Portugal
Visuomotor circuit mapping in the larval zebrafish brain

105
Ribeiro, Andre
Tampere University of Technology, Finland
Symmetry breaking and the emergence of individuality in random paw choices and procedural learning in mice

106
Rodrigues, Filipe S.
Champalimaud Centre for the Unknown, Portugal
Efficiency in behavioral control: disentangling abstract & low-level neural representations of task variables

107
Rodrigues-Vaz, Ines
Champalimaud Centre for the Unknown, Portugal
Push-pull alternating reward paradigm to study the effect of reward on the selection of actions

108
Romero-Ferrero, Francisco
Champalimaud Centre for the Unknown, Portugal
Theta rhythmic organisation of hippocampal cell assemblies during a spatial working memory task

109
Russo, Eleanor
Heidelberg University, Bernstein
A network-based model sensitive to (dynamic) visual motion feedback

110
Samborska, Veronika
University of Oxford, UK
Generalisation of structural knowledge in hippocampal – prefrontal circuits

111
Schwartzenbeck, Philipp
Wellcome Centre for Human Neuroimaging, UK
Neural computations in the hippocampal formation underlying compositional judgements

112
Sibener, Leslie
Columbia University, USA
Novel 2D joystick task to study motor control and learning in head-fixed mice

113
Silva, Tatiana
Champalimaud Centre for the Unknown, Portugal
Modulation of cerebellar consolidation for delay eyeblink conditioning

114
Sosa, Marielena
University of California, San Francisco USA
Awake dorsal and ventral hippocampal sharp-wave ripples occur independently and coincide with opposing patterns of modulation in the nucleus

115
Steinfeld, Raphael
Champalimaud Centre for the Unknown, Portugal
Task engagement affects population dynamics in auditory cortex

116
Storchi, Riccardo
University of Manchester, UK
Measuring mouse vision using innate behavioural responses

117
Teles, Magda C.
ISPA, Portugal
The role of developmental social complexity on adult zebrafish behaviour

118
Tessereau, Charline
University of Nottingham, UK
One shot learning in spatial navigation: a challenge in computational neuroscience

119
Trivedi, Chintan
University College London, UK
Regulation of innate behavioural states in larval zebrafish through a conserved modular circuit

120
Valente, Susana
Champalimaud Centre for the Unknown, Portugal
Investigating the role of prolactin in male sexual behaviour

121
Weiss, Aurelien
Ecole Normale Supérieure, France
Active sampling decreased the perceived stability of the environment and associated neural representations.

122
Wu, Yunmin
Max-Planck Institute for Neurobiology, Germany
Neural basis of motion perception: what can illusions tell us?

123
Yashina, Ksenia
Columbia University, USA
A novel conditioned place avoidance paradigm reveals a repertoire of learning strategies in a juvenile zebrafish
POSTER SESSION II

Poster Number 25

Thursday

<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Poster Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neural activity in the mouse mPFC during a memory-guided spatial task on a treadmill</td>
<td>Afonso, João</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Psychophysics of complex skill learning</td>
<td>Agarwal, Gautam</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Age dependent responses to noisy current injections in the dentate gyrus of the hippocampus</td>
<td>Arribas, Diego M.</td>
<td></td>
</tr>
<tr>
<td>Biomedicine Research, Argentina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Neural representations of the abstract causal structure of the environment</td>
<td>Baram, Alon</td>
<td></td>
</tr>
<tr>
<td>University of Utah, USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Modulation of locomotor behaviors by a hypothalamic source of dopamine in the larval zebrafish</td>
<td>Barrios, Joshua</td>
<td></td>
</tr>
<tr>
<td>Institute of Pharmacology, Poland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Towards an explanation of neural activities in higher-order brain areas</td>
<td>Berger, Severin</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Connectivity gradients in diffusion weighted imaging</td>
<td>Blazquez Freches, Guilherme</td>
<td></td>
</tr>
<tr>
<td>Radboud University, Netherlands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>The International Brain Laboratory: data architecture</td>
<td>Bonacchi, Niccolo</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Elucidating the role of IL-17 on Alzheimer's disease</td>
<td>Bragas, Helena C.</td>
<td></td>
</tr>
<tr>
<td>Instituto de Medicina Molecular, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A new transparent multichannel electrode for improved combination of electrical mesoscopic cortical recordings and neuronal optical control/imaging</td>
<td>Brosch, Marcel</td>
<td></td>
</tr>
<tr>
<td>Leibniz Institute for Neurobiology, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Molecular signatures of motor cortical diversity during learning</td>
<td>Carmona, Lina Marcela</td>
<td></td>
</tr>
<tr>
<td>Zuckerman Institute, Columbia University, USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The cost of control in perceptual decision making</td>
<td>Castiñeiras de Saa, Juan</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Network localization of mania based on causal brain lesions</td>
<td>Cotovio, Gonçalo</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Active olfactory sampling in the American cockroach</td>
<td>Couzin-Fuchs, Einat</td>
<td></td>
</tr>
<tr>
<td>University of Konstanz, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Champalimaud Molecular and Transgenic Tools Platform</td>
<td>Cunha, Ana</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>General Multilinear Models with Gaussian Process priors</td>
<td>Date, Akira</td>
<td></td>
</tr>
<tr>
<td>University of Miyazaki, Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hypothalamic circuits for social behaviour</td>
<td>Dias, António</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Developmental characterization of neuronal populations involved in visually guided behaviours</td>
<td>Diez Del Corral, Ruth</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Functional investigation of zebrafish behavioral circuits using precise photostimulation</td>
<td>Donovan, Joseph</td>
<td></td>
</tr>
<tr>
<td>Max Planck Institute of Neurobiology, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Hindbrain responses during optokinetic behavior in larval zebrafish</td>
<td>Feierstein, Claudia</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Sensory and motor representations in the inferior olive</td>
<td>Félix, Rita</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Foraging for movement patterns: a case-study in dance creation</td>
<td>Fonseca, Ana Rita</td>
<td></td>
</tr>
<tr>
<td>FCSH - Universidade NOVA de Lisboa, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Executive functions, emotional regulation and communication in early childhood. Analyzing the role of temperament and social Vulnerability</td>
<td>Gago Galvagno, Lucas</td>
<td></td>
</tr>
<tr>
<td>Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Is the olfactory code combinatorial or multidimensional? Is the olfactory code combinatorial or multidimensional?</td>
<td>Galizia, C Giovanni</td>
<td></td>
</tr>
<tr>
<td>Universitat Konstanz, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>The effect of Basal forebrain activation on the subthreshold response entropy of single neuron, in the mice visual cortex</td>
<td>Ghaderi, Parviz</td>
<td></td>
</tr>
<tr>
<td>Shahid beheshti University of Medical Science, Iran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>High-throughput behavioral analysis and neural circuit dissection of foraging and feeding behavior in Drosophila melanogaster</td>
<td>Goldschmidt, Dennis</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>From online behavior to offline fears: using influenza to track anxiety</td>
<td>Gonçalves-Sá, Joana</td>
<td></td>
</tr>
<tr>
<td>Instituto Gulbenkian de Ciência, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Organisation of inhibitory Golgi cell population activity in the cerebellar cortex during spontaneous and evoked movements</td>
<td>Gurnani, Harsha</td>
<td></td>
</tr>
<tr>
<td>University College London, UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Convergent neural representations in artificial and biological neural networks performing a heat gradient navigation task</td>
<td>Haesemeyer, Martin</td>
<td></td>
</tr>
<tr>
<td>Harvard University, USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Exploring replay dynamics in MEG with hidden markov models</td>
<td>Higgins, Cameron</td>
<td></td>
</tr>
<tr>
<td>Oxford Centre for Human Brain Activity, UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Motion signals mediate group effect on defensive behaviours in Drosophila melanogaster</td>
<td>Howcroft Ferreira, Clara</td>
<td></td>
</tr>
<tr>
<td>Champalimaud Centre for the Unknown, Portugal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Using phasic neuromodulation to target plasticity and treat neurological injury</td>
<td>Hulsey, Daniel</td>
<td></td>
</tr>
<tr>
<td>University of Texas at Dallas, USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Psychophysics and neural modelling beyond GLMs: General Multilinear Models with Gaussian Process priors (GMM-GP) to capture non-linear interaction in regressors</td>
<td>Hyafil, Alexandre</td>
<td></td>
</tr>
<tr>
<td>Universitat Pompeu Fabra, Spain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poster number</td>
<td>Title</td>
<td>Authors</td>
<td>Institution/Location</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>63</td>
<td>Zebrafish aggression on the sub-second time-scale: Inter-individual motor coordination patterns reveal rules of assessment and conflict resolution</td>
<td>Iglesias-Julios, Marta</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>65</td>
<td>Linguistic activation and bi-directional reading: an eyetracker investigation</td>
<td>Khan, Aizuddin</td>
<td>Indian Institute of Technology Bombay, India</td>
</tr>
<tr>
<td>66</td>
<td>Cortical and striatal ensemble dynamics during goal-directed behavior</td>
<td>Klaus, Andreas</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>67</td>
<td>Intra- vs. inter-group variance in collective behavior</td>
<td>Knebel, Daniel</td>
<td>Bar Ilan University, Israel</td>
</tr>
<tr>
<td>68</td>
<td>A possible dendritic model for the orientation tuning of surround modulation in the primary visual cortex</td>
<td>Keemink, Sander</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>69</td>
<td>Behavioral characterization of antinociceptive and nonrewarding properties of a novel biased opioid, PZM21</td>
<td>Kudla, Lucja</td>
<td>Polish Academy of Sciences, Poland</td>
</tr>
<tr>
<td>72</td>
<td>Biological motion as an innate perceptual mechanism driving social affiliation</td>
<td>Larsch, Johannes</td>
<td>Max Planck Institute of Neurobiology, Germany</td>
</tr>
<tr>
<td>73</td>
<td>Correlation between song acoustics and neural activity in the song-related cortical target of the basal ganglia in songbirds</td>
<td>Leblois, Arthur</td>
<td>CNPP, UMR CNRS 8119, France</td>
</tr>
<tr>
<td>74</td>
<td>Quantifying the contribution of optic flow processing to untethered navigation in the fly</td>
<td>Leonhardt, Aljoscha</td>
<td>Max Planck Institute of Neurobiology, Germany</td>
</tr>
<tr>
<td>76</td>
<td>Neural basis for directed courtship in Drosophila</td>
<td>M.A. Ribeiro, Inês</td>
<td>Max Planck Institute of Neurobiology, Germany</td>
</tr>
<tr>
<td>78</td>
<td>Better multi-task learning through filtered predictive maps</td>
<td>Madarasz, Tamas</td>
<td>University of Oxford, UK</td>
</tr>
<tr>
<td>79</td>
<td>Predicting the outcome of chemotaxis without behavioral details</td>
<td>Madirolas, Gabriel</td>
<td>CRC - CNRS, France</td>
</tr>
<tr>
<td>83</td>
<td>How do we learn to learn?</td>
<td>Mark, Shirley</td>
<td>University College London, UK</td>
</tr>
<tr>
<td>88</td>
<td>Dark-reared rats develop higher visual acuity than controls in an orientation discrimination task</td>
<td>Montano, Ilaria</td>
<td>SISSA, Italy</td>
</tr>
<tr>
<td>90</td>
<td>Precise excitation-inhibition balance controls gain and timing at the hippocampus</td>
<td>Moza, Sahil</td>
<td>National Centre for Biological Sciences, India</td>
</tr>
<tr>
<td>91</td>
<td>Volumetric calcium imaging of internal-state dependent taste processing in the Drosophila brain</td>
<td>München, Daniel</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>93</td>
<td>Coordination of structure and function in motor output pathways</td>
<td>Nelson, Anders</td>
<td>Columbia University, USA</td>
</tr>
<tr>
<td>95</td>
<td>Anterior cingulate cortex inactivation impairs performance monitoring in mice</td>
<td>Oliveira, Rodrigo</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>97</td>
<td>Developing a two-alternative forced choice working memory task in mice</td>
<td>Ona-Jodar, Tiffany</td>
<td>IDIBAPS, Spain</td>
</tr>
<tr>
<td>99</td>
<td>Drosophila as a model system of multi-modal motor integration for oriented behaviour</td>
<td>Paço, Miguel</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>101</td>
<td>A simple rule connects mechanistic and evolutionary models of foraging behavior in Caenorhabditis elegans</td>
<td>Perez-Escudero, Alfonso</td>
<td>CRCA - CNRS, France</td>
</tr>
<tr>
<td>105</td>
<td>Evolution of neuronal circuits underlying locomotion in closely related vertebrate species</td>
<td>Rajan, Gokul</td>
<td>Institut Curie - Centre de Recherche, France</td>
</tr>
<tr>
<td>106</td>
<td>Sensory and control limitations shape behavioral strategies during sensory discrimination</td>
<td>Reato, Davide</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>109</td>
<td>Longitudinal trends in reward-related feeding behavior and palatability after weight-loss surgery</td>
<td>Ribeiro, Gabriela</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>110</td>
<td>Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and cognitive behaviour</td>
<td>Ribeiro, Miguel</td>
<td>Instituto de Medicina Molecular, Portugal</td>
</tr>
<tr>
<td>116</td>
<td>Monitoring behavioral changes induced by long-term phasic opticogenetic activation of serotonergic neurons</td>
<td>Sautyory, Solène</td>
<td>Champalimaud Centre for the Unknown, Portugal</td>
</tr>
<tr>
<td>120</td>
<td>Investigating the potential bookmarking function of the proneural factor Ascl1/Mash1 in vertebrate neurogenesis</td>
<td>Soares, Diogo</td>
<td>Instituto Gulbenkian de Ciência, Portugal</td>
</tr>
<tr>
<td>122</td>
<td>Forebrain control of behaviorally-driven social orienting in zebrafish</td>
<td>Stednitz, Sarah</td>
<td>University of Oregon, USA</td>
</tr>
<tr>
<td>126</td>
<td>Neural computational principles of auditory processing revealed by magnetoencephalography and deep neural networks</td>
<td>Teng, Xiangbin</td>
<td>Max Planck Institute for Empirical Aesthetics, Germany</td>
</tr>
<tr>
<td>130</td>
<td>Microstimulation in a spiking neural network model of the midbrain superior colliculus elicits normometric saccadic eye movements</td>
<td>Van Opstal, John</td>
<td>Donders Institute, Netherlands</td>
</tr>
<tr>
<td>131</td>
<td>Using a sound source localization system to quantify autism-like deficits in mice during naturalistic group interaction</td>
<td>Warren, Megan</td>
<td>University of Delaware, USA</td>
</tr>
<tr>
<td>133</td>
<td>Opioid sensitivity in animal model of novelty seeking after three months of morphine self-administration</td>
<td>Wiktorowska, Lucja</td>
<td>Polish Academy of Sciences, Poland</td>
</tr>
</tbody>
</table>
Practical Information

Venue - The Champalimaud Centre for the Unknown (CCU)

The CCU is located on the beautiful riverside area of Pedrouços, near the magnificent Tower of Belém. This area, where the river Tagus meets the Atlantic Ocean, is of great historical significance as the great Portuguese pioneers sailed from this location to discover the “unknown” in the XV and XVI centuries. The presence of the CCU leverages this historical heritage by creating an inspirational link between the discoveries of yesteryear and the epic adventure of scientific research.

Auditorium
(Talk Sessions)

Exhibition hall
(Poster Sessions and Lunch)

Amphitheatre
(Reception and Wine & Cheese)

Telephone
(+351) 210 480 000 (CCU)
(+351) 210 480 113 (Admin office)

Emergency
(+351) 210 480 258 (CCU)
(+351) 213 421 623 (Tourism police)
112 (National number)

Wifi

network: Eventos
password: Auditorio2018

JOIN THE CONVERSATION
#CRSymp2018

If you need a taxi please go to CCU main entrance (ground floor) and use the Taxi Application, located on the right side.

You will be given a taxi reservation number and you just need to take the taxi with the corresponding number. Feel free to ask for help at the CCU reception.

We kindly ask you not to give up after making a taxi reservation.

© Rui Ochoa

© Rosa Reis
Symposium Activities

If you want to join any of these activities, please ask at the Help Desk if there are still spots available and, if so, sign-up the corresponding forms. Spots will be granted on a first-come, first-served basis.

Walking tours in downtown Lisbon

On Wednesday (24th October) afternoon there will be walking tours in downtown Lisbon, guided by Champalimaud Research students and postdocs. A free bus will leave from the Champalimaud Centre for the Unknown at 18:00 to Cais do Sodré, where the tours start. The duration of each tour is approximately 45 min.

Tours to the Champalimaud Centre for the Unknown (CCU)

There will be guided tours to the CCU on Thursday (25th October), at 17:30 and during lunch on Friday (26th October), at 13:00. The duration of each tour is approximately 25 min.

Boat trip on the Tagus river

After the final session on Friday (26th October), take the chance to see the Champalimaud Centre for the Unknown (CCU) from a different perspective! We have arranged two Hippo trip tours (amphibious sightseeing), the first one leaving the CCU at 17:30 and the second one at 18:30. Both will arrive at the banquet location (Doca de Santo Amaro). The duration of the tour is 45 min. Please note that you may join this trip even if you did not sign-up for the banquet.

Banquet & Party

The banquet will be held on Friday (26th October) at Doc Cod, a riverside restaurant in Doca de Santo Amaro (Lisbon). At 19:30, a sunset cocktail will be served overlooking the river, followed by dinner at 20:00. Bring your dancing shoes for the party after dinner! The restaurant is a 45 minute walk from the Champalimaud Centre for the Unknown, and is also easily reachable by train (Alcântara-Mar station) or Taxi. The cost of the banquet & party is €50.

Special Issue of Cells Journal

“Quantitative Approaches to Behaviour and Neural Systems”

Selected Papers from 2018 Champalimaud Research

AN OPEN CALL FOR ALL SYMPOSIUM PARTICIPANTS

Participants in the 2018 Champalimaud Research Symposium are cordially invited to contribute original research papers or reviews to a Special Issue of Cells. All the papers will be peer-reviewed according to the standard procedure of Cells. One selected abstract will be awarded with a publication fully free of charge, and other papers will receive a 20% discount from the standard Article Processing Charge (APC).

The Issue will be Guest Edited by Dr. Alfonso Renart and Dr. Michael Orger from the Champalimaud Centre for the Unknown.

Deadline for manuscript submissions: 28 February 2019.

For more information see: www.mdpi.com/journal/cells/special_issues/CR_symposium
How to get to the Symposium Site